BASIC THERMODYNAMICS

	Dilote IIII		0		
Course code	20ES1304	Year	II	Semester	Ι
Course category	Engineering Science Course	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal	30	Semester End	70	Total Marks:	100
Evaluation:	50	Evaluation:	70		100

СО	Statement	Level	Units
CO1	Understand the fundamental laws of thermodynamics, concept of	L2	1,2,3,4,5
	reversibility, phase transformation of materials and various thermal		
	cycles.		
CO2	Apply the energy conservation for closed and open cycle systems.	L3	1,2
CO3	Apply the directional law for various cyclic devices named as Heat	L3	2,3
	Engine, Heat Pump and Refrigerator.		
CO4	Analyze availability and entropy of various perfect gas as well as phase	L4	3,4
	transforming thermodynamic processes.		
CO5	Analyze the performance of different thermodynamic cycles.	L4	5
CO6	Analyze the given scenario, use appropriate techniques and write an	L4	2,3,4,5
	effective report.		

Cont	ributio	on of C	Course	Outco	omes t	oward	s achie	eveme	nt of P	rogram	Outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	3												3	
CO2	3	3											3	
CO3	3	3				2						2	3	
CO4	3	3											3	
CO5	3	3				2						2	3	

	Syllabus			
Unit No	Unit No Contents			
	INTRODUCTION:	CO 1,		
	Macroscopic and microscopic viewpoints, definitions of thermodynamic	CO 2,		
	terms, quasi – static process, point and path function, forms of energy, ideal			
Ι	gas and real gas, Zeroth law of thermodynamics.			
	FIRST LAW OF THERMODYNAMICS (Closed System):			
	Joule's experiment - first law of thermodynamics, corollaries- perpetual			
	motion machines of first kind, First law applied to non-flow process.			
	FIRST LAW OF THERMODYNAMICS (Open System): First law	CO 1,		
	applied to flow process, Steady flow energy equation- limitations of first law	CO 2,		
п	of thermodynamics.	CO 3,		
11	SECOND LAW OF THERMODYNAMICS:	CO 6		
	Kelvin - Planck statement and Clausius statement and their equivalence,			
	corollaries - perpetual motion machines of second kind - reversibility and			
	irreversibility, cause of irreversibility			
	ENGINEERING DEVICES: Carnot cycle, heat engine, heat pump and	CO 1,		
ш	refrigerator, Carnot theorem, Carnot efficiency.	CO 3, CO 4,		
111	ENTROPY:			
	Clausius inequality -Concept of Entropy- entropy equation for different	CO 6,		
	processes and systems, Maxwell relations, TdS equations.			

	AVAILABILITY AND IRREVERSIBILITY:							
	Definition of exergy and energy, expressions for availability and							
	irreversibility. Availability in steady flow, non-flow processes,	CO 6,						
IV	irreversibility.							
	PROPERTIES OF STEAM AND USE OF STEAM TABLES : Pure Substances, P-V-T surfaces, T-s and h-s diagram, Mollier chart, dryness							
	fraction, property tables, analysis of steam undergoing various							
	thermodynamic processes using Mollier chart- steam calorimetry.							
	GAS POWER CYCLES:							
	Otto, Diesel, Dual Combustion cycles- Description and representation on P-V and							
	T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis							
v	– comparison of Cycles.							
v	THERMODYNAMIC CYCLES:							
	Sterling Cycle, Atkinson Cycle, Ericsson Cycle, Lenoir Cycle, Brayton Cycle -							
	Sterning Cycle, Atkinson Cycle, Enesson Cycle, Lenon Cycle, Diayton Cycle –							
	Description and representation on P–V and T-S diagram, Thermal Efficiency,							

Learning Resource				
Text books:				
1. P.K.Nag, Engineering Thermodynamics, 5/e, Tata McGraw Hill, 2013.				
2. Yunus A. Cengel, Michaela A. Boles, Thermodynamics, 7/e, Tata McGraw Hill, 2011.				
Reference books				
1. J.B.Jones and G.A.Hawkins, Introduction to Thermodynamics, 2/e, John Wiley &				
Sons,2012.				
2. Moran, Michael J. and Howard N. Shapiro, Fundamentals of Engineering				
Thermodynamics, 3/e, Wiley, 2015				
3. Claus Borgnakke Richard E. Sonntag, Fundamentals of Thermodynamics, 7/e, Wiley,				
2009				
4. R.K. Rajput, S.Chand& Co., Thermal Engineering, 6/e, Laxmi publications, 2010.				
e- Resources & other digital material				
1. <u>https://nptel.ac.in/courses/112/105/112105266/</u>				
2. <u>https://nptel.ac.in/courses/103/103/103103144/</u>				
3. https://nptel.ac.in/courses/112/105/112105220/				
4. https://nptel.ac.in/courses/101/104/101104067/				
5. https://nptel.ac.in/courses/101/104/101104063/				
6. <u>https://nptel.ac.in/courses/103/104/103104151/</u>				